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ABSTRACT

Realtime speech denoising has been long studied. Almost all
existing methods process the incoming data stream using a
sliding window of fixed-size. Yet, we show that the use of
fixed-size sliding window may lead to an accumulating lag, es-
pecially in presence of other background computing processes
that may occupy CPU resources. In response, we propose
a new sliding window strategy and a lightweight neural net-
work to leverage it. Our experiments show that the proposed
approach achieves denoising quality on a par with the state-
of-the-art realtime denoising models. More importantly, our
approach is faster, maintaining a stable realtime performance
even when the available computing power fluctuates.

Index Terms— realtime, denoising, sliding window, neu-
ral network, data stream

1. INTRODUCTION

Realtime speech denoising is a highly demanded audio process-
ing task—perhaps more demanded than ever—as our world is
still shadowed by COVID pandemic and the online meeting
is becoming a “new normal” of our daily social life. Most
recent, state-of-the-art realtime denoising techniques are all
based on neural networks[1, 2, 3, 4, 5, 6, 7, 8]. They seek
novel network structures to achieve plausible denoising quality
while retaining network simplicity to reduce processing time.

Unlike offline speech denoising, an audio signal in realtime
setting is provided in a streaming fashion. The network must
process signal samples as soon as they arrive, and generate
output samples in the shortest possible delay. As a result, in
almost all realtime techniques, a common strategy is to use a
sliding window buffer of fixed length.

This seems a natural choice: the network waits until the
sliding window buffer is fulfilled with incoming audio samples,
and then denoises the data in that buffer. Afterwards, the
resulting signal data are fed into a realtime audio player. In this
way, the network expects an input signal with a fixed length L.
As long as the network processing time is always less than L,
the total lag from the arrival of a signal sample to the playing
time of the corresponding denoised sample is bounded, larger
than L but less than 2L (see analysis in Sec. 2.1).

In practice, however, it is difficult, if not impossible, to
choose a buffer length L that ensures realtime performance.
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A large L causes a long lag; a small L may lead a network
processing time longer than L, resulting in choppy audio play-
back. This is because in a real computing environment, there
are always other background processes (e.g., 4K video play-
back and games). The shorter the L is, the more prone is the
denoising network to the CPU occupancy of other processes.
In short, the sliding window strategy, albeit fundamental to
realtime denoising, remains elusive from careful examination.

We propose a different sliding window strategy, namely
the dynamic sliding window. In our approach, the input buffer
length is not fixed. The network takes in currently buffered
data regardless of its length, and starts to process it with no
wait. While the network is running, the newly received data
are accumulated in a buffer, ready to be processed when the
network finishes its current round of denoising. This sliding
window strategy, although conceptually simple, is more robust
against CPU occupancy of other processes, and thereby result-
ing in shorter and more stable lag. To show this advantage,
we formally analyze the audio playback delays caused by our
approach and the commonly used fixed-size sliding window.
To our knowledge, this is the first time the network delays
under different sliding window strategies are examined.

Many existing realtime denoising networks (e.g., [1, 2, 3])
are not able to incorporate dynamic sliding window easily (see
discussion in Sec. 2.2). We therefore propose a lightweight
denoising network tailored for realtime setting: accepting
streaming signals and processing them using the dynamic
sliding window. By carefully padding and reusing data across
sliding windows, our network undergoes no degradation on
denoising quality comparing to the offline non-streaming case.

We conduct extensive experiments comparing the proposed
model with several state-of-the-art realtime denoising meth-
ods. Results suggest that our proposed model produces the
smallest playback lag amongst all compared methods while
obtaining on-par denoising quality on all the quality metrics.
Most importantly, compared with the prior realtime denoising
method [1], our model is more robust to maintaining realtime
performance in real-world scenarios, where other background
tasks such as Zoom conferences, 4K video editing, and video
games may preempt CPU cycles.

2. METHOD

We start by analyzing the audio playback lag when the fixed-
size sliding window is used. This is compared to the lag using
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Fig. 1: Dynamic vs. fixed-size sliding windows. Different
windows are indicated by different colors. Each window is
processed by the network individually. The gray areas indicate
the time period in which CPU cycles are occupied by other
processes and thus the network processing time increases.

our proposed dynamic sliding window (Sec. 2.1). Motivated by
our analysis, we then propose a lightweight denoising network
that leverages dynamic sliding window for faster and more
robust denoising (Sec. 2.2).

2.1. Sliding Window for Streaming Data

Fixed-size sliding window. In almost all existing network-
based denoising models, the incoming audio signal is treated
as a time series of non-overlapping windows [X1, X2, · · · ].
Each window hosts a constant length L of audio samples (i.e.,
Xi ∈ RL), filled in a streaming fashion. The network F takes
in the latest unprocessed window Xi, outputs denoised result
F (Xi), and then waits until the next window, Xi+1, is fulfilled
(see Fig. 1-a). Let tk denote the network processing time for
window Xk. Note that although the window size is fixed, in
practice tk varies over time due to other background processes’
CPU occupancy. Our analysis shows that the delay (or lag) di
from the moment of receiving Xi to the moment of network
outputting F (Xi) is expressed as

di = 2L+ max
1≤p≤q≤i

q∑
k=p

(tk − L). (1)

The derivation of Eq. (1) is nontrivial. Because of limited
space here, we skip the derivation details, but we have made it
publicly available online1.

Our analysis (1) is revealing: in the ideal case wherein ti <
L is always satisfied, the denoising network runs smoothly in
realtime with no accumulating lag; the playback delay is upper-
bounded by 2L. However, in reality, the network execution is
often affected by other background computing processes, and
its processing time ti may become larger than L. At the same
time, a length ti of audio samples arrives, accumulated in the
buffer. To process this amount of data, the network needs to
run d tiL e > 1 times. This can in turn cause audio playback lag
to accumulate (and hence the summation term in (1)).

Dynamic sliding window. We propose to dynamically ad-
just the sliding window size. Immediately after the network

1Link to the derivation: http://www.cs.columbia.edu/cg/rtdenoise/.

finishes processing a data window Xi, the newly received
data in the buffer have a length ti, which may or may not be
larger than L. Regardless of the buffer length, we denoise the
available buffered data with no wait. Figure 1-b illustrates the
process. Under this strategy, the delay di for playing back the
window Xi is

di = max
k≤i

(tk−1 + tk), i ≥ 2. (2)

When i = 1, the delay for the first window is d1 = L0 +
t1, where L0 is an initial window size to start the denoising
process at the beginning. We again refer the reader to our
online document for the derivation of Eq. (2).

This analysis shows that di depends only on the network
processing time of two consecutive windows Xk−1 and Xk. In
contrast to the fixed-size sliding window (shown in (1)), there
is no accumulating delay. Thus, our approach is more robust
against computing power fluctuation. This is a remarkable ad-
vantage, since in a real computing environment the computing
power for denoising constantly varies (see Sec. 3.3).

2.2. Network Structure and Data Padding
While the dynamic sliding window strategy is independent pf
specific network structures, many existing realtime denoising
networks [1, 2, 3, 4, 5] can not be easily adapted to utilize it.
Some of them require a predetermined sliding window size
prior to the network execution [1]. Others focus on reducing
the network inference cost, but how they handle the incoming
data stream remains unclear [2, 3, 4, 5].

Proposed network structure. We propose a lightweight de-
noising network using the dynamic sliding window. Our net-
work is built upon the noise removal component in [9] (and
thus much simpler than the denoising model therein). In-
put to our network is a spectrogram sx obtained by applying
STFT on a data window Xi. The spectrogram sx is first pro-
cessed by a 2D convolutional layer with kernel size (5, 5) and
dilation (1, 1) in time-frequency domain. The resulting fea-
ture map is fed into a unidirectional LSTM [10] of hidden
size 400. Finally, three fully-connected layers of hidden size
(400, 600, 512) are applied for each time bin. Similar to other
speech enhancement models [9, 11, 12], our network outputs
a complex-valued mask c of the same dimension as sx. Lastly,
the denoised audio signal is obtained by applying the inverse
STFT to c� sx, where � denote the Hadamard product.

At training time, we optimize the following loss function:

L = Ex∼p(x)||c� sx − s∗x||2, (3)

where s∗x denotes the ground truth spectrogram of a clean
audio. When computing the STFT, we set the number of FFT
bins to 510, Hann window size to 400, and hop length to 128.

Data padding. Our network (and also many others) has con-
volutional layers, which require padding to process data on
the boundary. To handle streaming data in a sliding window
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Fig. 2: Illustration of data padding. Two consecutive win-
dows of size 8 (green) and 6 (yellow) are processed by two 1D
convolutions of kernel size 3. In this case, we pad two future
elements for each window (22, 23 for window Xi) and reuse
the two elements of the first convolution results from previous
window (15, 16 obtained from processing window Xi−1).

fashion, this means we need to buffer enough “future” data
when a data window is processed (e.g., block 16 and 17 for
window Xi−1 in Fig. 2). Waiting for the arrival of padding
data introduces an additional lag (48ms in our practice). But
we can reuse the convolution results of the padding data in
the next sliding window (see illustration in Fig. 2). Apart
from saving some computational cost, reuse of padding data is
critical to the network’s denoising quality. It ensures that our
network maintains the same denoising quality as if it takes in
the entire signal all at once. Perhaps surprisingly, such a guar-
antee remains lacking in existing realtime denoising networks
(see experiments in Sec. 3.2).

3. EXPERIMENTS

Our experiments are twofold: we evaluate our network’s de-
noising quality by comparing it to the state-of-the-art realtime
denoising models (Sec. 3.2). We then demonstrate the per-
formance advantages of the dynamic sliding window over the
conventional fixed-size sliding window approach (Sec. 3.3).

3.1. Experiment Setup
Datasets. We conduct experiments on two publicly available
datasets. The first, provided by Xu et al. [9], has clean audios
selected from AVSPEECH [11] and noises from AudioSet [13]
and DEMAND [14]. We refer to this dataset as AAD dataset.
In addition, we also test on Valentini [15] benchmark,
which contains audio clips from 28 speakers; each clip has its
corresponding clean and noisy versions.
Evaluation metrics. To evaluate the denoising qualtiy, we use
the following widely used objective metrics: (i) STOI: Short-
Time Objective Intelligibility [16]; (ii) PESQ: Perceptual eval-
uation of speech quality (we use narrowband version) [17]; (iii)
CSIG: MOS predictor of signal distortion [18]; (iv) CBAK:
MOS prediction of the intrusiveness of background noise [18];
(v) COVL: MOS predictor of overall quality [18]; (vi) SSNR:
Segmental Signal-to-Noise Ratio [19].

We use two metrics to evaluate the networks’ realtime
performance: the average network processing time (DN) and
the maximum audio playback lag (DA). DN is defined as

Table 1: Denoising quality on AAD dataset in both offline
(top) and realtime (bottom) settings. All scores are the average
results for input audios with SNR [-10, -7, -3, 0, 3, 7, 10].
Second best is highlighted in cyan.

Mode Methods STOI CSIG CBAK COVL PESQ SSNR

noisy 0.73 2.46 2.29 2.03 1.70 -1.99

Non-
realtime

Demucs48 0.78 2.38 2.39 2.06 1.83 1.28
FullSub 0.80 2.89 2.77 2.50 2.25 2.62
RNN-Mod 0.69 2.49 2.42 2.07 1.72 0.73
Ours 0.77 2.68 2.63 2.31 2.04 1.92

Realtime

Demucs48 0.78 2.35 2.37 2.04 1.81 1.20
FullSub 0.76 2.60 2.59 2.24 2.00 1.65
RNN-Mod 0.72 1.79 2.32 1.77 1.88 -1.82
Ours 0.77 2.68 2.63 2.31 2.04 1.92

1
M

∑M
i=1 ti, where M is the total number of sliding windows,

and ti is the processing time for window Xi. DA measures,
as the audio samples come in, the maximum lag between the
arrival time of an audio sample and its playback time (after
denoising). Unless otherwise stated, the denoising networks
are run on CPU (3.60GHz Intel 8-Core i7-9700K), and the
metrics are measured in milliseconds.

3.2. Realtime Speech Denoising Quality
We compare our denoising model against several recently pro-
posed realtime denoising networks, including Demucs48 [1],
FullSub [2], and RNN-Mod [3]. We train these models on
the same aforementioned datasets, and evaluate denoising qual-
ity in both realtime and offline settings. In offline setting, the
audio signal is provided at once, and thus no sliding window
is needed. By comparing denoising quality of the two settings
from the same network, we wish to understand to what extent
a sliding window strategy affects the denoising quality.

For Demucs48, we use their provided sliding window
implementation. FullSub and RNN-Mod do not provide
streaming implementations, and we found that their denoising
quality becomes unstable when dynamic sliding window is
added. Therefore we adopt for them the fixed-size sliding
window of size 80ms with 16ms padding on the past and future
ends. We choose this sliding window configuration because
our experiments show that it leads to the best possible realtime
denoising quality while keeping an acceptable delay.

Table 1 summerizes the evaluation results on AAD dataset.
Our model has the best or on-par realtime denoising quality
for all the quality metrics. Also worth noting is that our model
is the only one that ensures the realtime denoising quality the
same as its offline counterpart, thanks to the data padding strat-
egy. All other models experience quality degradation when
they are switched from offline setting to realtime setting. More-
over, the results of realtime denoising quality on Valentini
benchmark are reported in Table 2.

3.3. Realtime Performance
Controlled experiments. First, we measure DN and DA of
different network models (see Table 3). Since these models



Table 2: Realtime denoising quality on Valentini.
Methods STOI CSIG CBAK COVL PESQ SSNR

Demucs48 0.94 4.46 3.63 3.92 3.34 7.77
FullSub 0.92 3.76 3.51 3.46 3.22 8.40
RNN-Mod 0.92 3.96 3.02 3.48 3.02 0.04
Ours 0.93 4.09 3.62 3.67 3.27 9.56

Table 3: Comparison of timings. In addition to DN and DA,
we also report cost of network inference for 200ms audio (SN).
Here the numbers include the mean and std. of the timings.

Methods DN DA SN

Demucs48 8.9 ± 0.1 58.4 ± 0.7 23.7 ± 1.2
FullSub 64.7 ± 0.8 182.0 ± 6.3 96.6 ± 9.6
RNN-Mod 3.3 ± 0.1 101.8 ± 0.9 4.5 ± 0.8
Ours 2.7 ± 0.1 61.6 ± 0.9 9.0 ± 1.0

take in different lengths of input data, we also measure their
network running time for processing a 200ms signal at once
without splitting it into multiple windows. All the measure-
ments are done without heavy background processes. The
results indicate that in a dedicated computing environment,
our network is as fast as the state-of-the-art models.

Next, we perform controlled experiments to understand the
realtime performance of dynamic sliding window and fixed-
size sliding window in presence of CPU resource fluctuation.
To this end, we create two denoise models: both use the same
denoising network (in Sec. 2.2) trained on AAD dataset; the
first one uses dynamic sliding window (referred as D-model)
while the second uses fixed-size sliding window (referred as
F-model). For fair comparison, the initial window size L0

in D-model is set the same as the fixed window size in F-
model (L0 = 16ms). We use the two models to denoise
the same set of audios, each of which has a length of 5s.
To impose computing power fluctuation, after 2 seconds we
deliberately delay the network processing by a factor of s
where s is randomly chosen from [1, 7]. This is to simulate
CPU occupancy by background processes in a controlled way,
as we ensure the same amount of delays are added to both
D-model and F-model.

Figure 3 shows the measured DN and DA as the audio
stream arrives over time. At the beginning, both can run
smoothly in realtime (with the playback lag NA < 100ms).
After 2 seconds, the computing power starts to fluctuate, caus-
ing some sliding windows not to be processed in time. As a
result, the playback lag DA of the F-model accumulates, and
the output audio playback becomes choppy. In contrast, DA of
the D-model stays stable, because it can dynamically increase
window size to catch up the delay. This experiment confirms
our theoretical analysis in Eqs. (1) and (2).

Real-world experiments. We then examine the realtime per-
formance of our model in real scenarios wherein the back-
ground processes may preempt CPU cycles. Here, we denoise
the same set of audios while different software is running
on the background, including 4K video playing, Zoom con-
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Fig. 3: Comparison of realtime performance between dy-
namic and fixed sliding window approaches. We artificially
increase the network processing time randomly by 1-7 times
after 2 seconds to simulate CPU power fluctuation. The curves
are averaged results over 100 trials with a fixed random seed.

Table 4: Realtime denosing lag for Demucs48 and Ours
when running other background software. Each cell shows
DA(DN) with both mean and std. Numbers are measured
using a 20s audio.

Software Demucs48 Ours

None 67.5±2.7 (9.7±0.5) 65.3±1.2 (3.6±0.0)
4K Video 69.2±4.8 (12.0±0.4) 67.8±6.92 (3.6±0.1)
Zoom 74.7±16.1 (13.2±0.4) 65.8±3.0 (3.9±0.1)
iMovie 3938.5±1167.3 (19.1±0.9) 82.4±3.7 (6.3±0.3)
Apex 15789.3±9501.6 (28.1±8.2) 167.2±28.7 (11.4±2.4)

ference, iMovie video editing, and a video game Apex. To
run Apex game, we use a Windows10 PC with an 8-core Intel
CPU (3.60GHz i7-9700K) and a GPU (NVIDIA GeForce RTX
2070 SUPER); tests with other software are performed on a
Macbook Pro (2.3GHz Intel Quad-Core i5). We choose these
software because they demand increasingly more CPU cycles.

We run these software individually, and meanwhile mea-
sure DN and DA using our model and Demucs48, respec-
tively. We compare with Demucs48 because it has its own
streaming implementation and offers comparable denoising
quality to ours. The results are reported in Table 4. As the back-
ground process becomes much computationally intensive (e.g.,
iMovie and Apex), the playback lag of Demucs48 increases
drastically, whereas the lag of our model stays mild and stable.
This is clear evidence indicating the performance advantage
of our model and the dynamic sliding window strategy.

4. CONCLUSION

We have proposed a dynamic sliding window strategy for real-
time speech denoising. Through careful analysis and experi-
ments, we demonstrated its advantages over the widely used
fixed-size sliding window strategy. Our denoising network
achieves realtime denoisnig quality comparable to the SOTAs,
while keeping the lag low by utilizing the dynamic sliding
window. Remarkably, it allows our model to run robustly in
real-world scenarios in presence of other background tasks.
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